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Abstract

Booth has described how the parameters for the analytic form of the transport

solution, to the one speed �nite slab problem in [x; �] geometry, can be estimated

by Monte Carlo. The research documented herein concerns the extension to the

reduced-source method of Booth's approach. The reduced-source method is an

iterative calculational approach that is believed to result in a roughly exponential

rate of convergence to the exact solution, constrained only by the precision of

numerical algorithms and �nite computer word-length.

Preface

Manipulation of the equations within this note draw from, and presuppose a familiarity with,

Tom Booth's (X-CI) paper,[1] which has been submitted to the American Nuclear Society for

publication. In addition, the resulting adapted FORTRAN test-bed code is a generalization

of Booth's original test-bed code, named \xmuh" (i.e., \[x; �]-geometry code for Henry").

The reduced-source method has been described recently by Gregg McKinney (X-CI).[2]

1. Introduction

In order to focus attention on that which is new in the present document, the starting point

for this research is presented in this section with a minimum of discussion. That is,

Equations 1{10, below, are presented for convenience, but are neither derived nor discussed

herein, except for some basic de�nitions of terms.

Booth starts his own derivation with Case's method, following the notation in Bell and

Glasstone.[3] The analytic form of the transport solution, to the one speed �nite slab

problem in [x; �] geometry (with isotropic scattering), is given by

�(x; �) = a+ 
+

0
(�)e�x=�0 + a� 

�
0
(�)ex=�0 +

Z
1

�1
A(�) �(�)e

�x=�d� (1)
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where

x is the spatial position (measured along the slab normal);

� is the direction cosine with respect to the x-axis;

�(x; �) is the angular ux;

��0 are the discrete eigenvalues of the associated eigenfunctions

 �
0
(�) =

c

2

�0

�0 � �
(2)

with

�0 being the positive root of

1 = c�0tanh
�1 1

�0
�
c�0

2
ln
�0 + 1

�0 � 1
(3)

� is an eigenvalue corresponding to the eigenfunction

 �(�) =
c

2
P

�

� � �
+ �(�)�(� � �) (4)

�(�) = 1�
c�

2
ln
�1 + �

1� �

�
(5)

where

c is (for non-multiplying media) the collision survival probability;

P indicates that the Cauchy principal value is to be used in any integration of a singular

term;

and

�(x) is the Dirac delta function.

From the orthogonality conditions on  �0 (�) and  �(�)

a� =
1

N�
0

Z
1

�1
�(0; �)� �

0
(�)d� (6)

A(�) =
1

N�

Z
1

�1
�(0; �)� �(�)d� (7)
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where

N�
0
=
Z

1

�1
� �

0
(�) �

0
(�)d� = �

c

2
�3
0

h c

�2
0
� 1

�
1

�2
0

i
(8)

Z
1

�1
� �0(�) �(�)d� = N��(� � �0) (9)

N� = �
h
�2(�) +

�2c2

4
�2
i

(10)

Based on the forgoing, Booth derives and prescribes[1] Monte Carlo estimation for quantities

that are used to obtain the coe�cients A(�) in Equation 7. These, together with all the

other computed quantities speci�ed in Equations 2{10, are used to obtain the ux speci�ed

in Equation 1.

2. The Reduced Source at the Boundary

If the slab thickness is T , then the left and right boundaries may be speci�ed as x = 0 and

x = T , or, equivalently, as x = �T and x = 0, respectively. We will have use for both

speci�cations (just as Booth explained in Reference [1], Section IV): the former speci�cation

for left-boundary computations; the latter for right boundary computations.

Given the computed angular ux, �(x; �), at the slab boundaries (initially choosing x = 0 to

be the left boundary and x = T the right), the corresponding boundary source-density is

given by

S(�) =j � j [�(0; �)H(�) + �(T; �)H(��)] (11)

where H(z) =
R z
�1 �(y)dy is the Heaviside function, and �(x; �) is given by Equation 1.

If the computed value of �(x; �), say �1(x; �), is equal to the exact solution for the given

problem, say �E(x; �), then S(�) will be exactly equal to the given source at the boundary,

say SE(�). As Booth points out (Reference [1], Section VIII), \If there were a perfect match

at the boundary, then the estimated solution would be identical to the true solution by

uniqueness.[4] That is, the estimated solution would then exactly satisfy both the transport

equation and the boundary conditions."

Any non-vanishing algebraic di�erence between the given source, SE(�), and the computed

source, from Equation 11, comprises the reduced source at the boundary, or boundary

residual,

S1(�) = SE(�)� S(�) (12)
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S1(�), in turn, speci�es the source for the problem, whose solution, say �2(x; �), is the

di�erence between the exact solution to the original problem and the solution given by

�1(x; �), viz.

�E(x; �) = �1(x; �) + �2(x; �) (13)

It should be noted that S1(�) can and, in practice, does have both positive and negative

components. This is treated by assigning positive and negative weights, respectively, in the

subsequent Monte Carlo estimation.

If �2(x; �) is not an exact solution (to the problem for which S1(�) is the given source), as

would be evidenced by a su�ciently large boundary residual, say S2(�), the process can be

continued for another iteration. The choice of a termination criterion, based on a speci�ed

magnitude of boundary residual, is arbitrary.

In this manner, Equations 11{13 prescribe an iterative method for converging to the exact

solution of the original problem | the reduced-source method.

3. Components of Transport Coe�cients Due to Boundary Residual

The components of the transport coe�cients, due to the direct contribution from the

boundary residual of Equation 12, can be computed by numerical integration (Reference [1],

Appendix). The remaining components (i.e., not due to the direct contribution from the

boundary residual) are estimated as Booth prescribed and coded in xmuh.

3.1 Components due to left-boundary residual

Subscripting with L to indicate left-boundary quantities, the left-boundary ux due to the

left-boundary residual source density is, from Equations 11 and 12

�L(�)H(�) =
S1

L(�)

j � j
=
SE
L (�)

j � j
� �(0; �)H(�) (14)

where SE
L (�) is the given source (on the left boundary) and �(0; �) is the computed ux (on

the left boundary).

3.1.1 A(�) due to left-boundary residual:

Substituting Equation 14 into Equation 7 we get

AL(�) =
1

N�

Z
1

�1
�L(�)H(�)� � (�)d� (15)
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Using Equations 4 and 15 we get

AL(�) =
1

N�

Z
1

�1
�L(�)H(�)�

h c
2
P

�

� � �
+ �(�)�(� � �)

i
d�

=
1

N�

Z
1

0

�L(�)�
c

2
P

�

� � �
d� +

1

N�

�L(�)H(�)��(�)

= IL(�) +BL(�) (16)

where

IL(�) =
1

N�

Z
1

0

�L(�)�
c

2
P

�

� � �
d� (17)

and

BL(�) =
1

N�

�L(�)H(�)��(�) (18)

Using Equations 10 and 18 we get

BL(�) =
�L(�)H(�)��(�)

�
h
�2(�) + �2c2

4
�2
i

=
�L(�)H(�)h

�(�) + �2c2

4�(�)
�2
i (19)

From Equation 5, we see that �(�) is unbounded for � = �1; but, BL(�1) vanishes, as can

be seen from Equation 19.

The IL(�) of Equation 17 can be calculated, with appropriate care in the vicinity of � = �,

using the approach in Reference [1], Section VII. And, as Booth explains in Reference [1],

Section IV, we need AL(�) only for � > 0, and, conversely, we need A(�) on the right

boundary, AR(�), only for � < 0 (see Section 3.2, below).

Divide the interval [-1,1] into 2K equal intervals, and, for 0 � � � 1, let �i and �i be the

midpoints of the intervals

�i = �i =
(i� 1

2
)�K

K
i = K + 1;K + 2; � � � ; 2K (20)
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Let

li =
i�K

K
i = K + 1;K + 2; � � � ; 2K (21)

be the endpoints of the ith interval, viz.

li�1 � � < li i = K + 1;K + 2; � � � ; 2K (22)

To evaluate IL(�) for the eigenvalues �j, assume a linear form for

�(�) =
1

2N�

�L(�)c�� (23)

in each interval. That is,

�i(�) = ai(�j � �) + ci i = K + 1;K + 2; � � � ; 2K (24)

Note that ai in Equation 24 is the slope of our linearized �i(�) in each interval. For i = K +1

and i = 2K we use a one-sided estimate of the ai, because no information about �L(�)H(�)

exists for i = K or i = 2K + 1. Elsewhere, a two-sided estimate of the slope is used.

Hence

aK+1 =
�(�K+2)� �(�K+1)

�K+1 � �K+2

= K[�(�K+1)� �(�K+2)] (25)

cK+1 = �(�K+1)� aK+1(�j � �K+1) (26)

ai =
�(�i+1)� �(�i�1)

�i�1 � �i+1
=
K

2
[�(�i�1)� �(�i+1)] i = K + 2;K + 3; � � � ; 2K � 1 (27)

ci = �(�i)� ai(�j � �i) i = K + 2;K + 3; � � � ; 2K � 1 (28)

a2K =
�(�2K)� �(�2K�1)

�2K�1 � �2K
= K[�(�2K�1)� �(�2K)] (29)

c2K = �(�2K)� a2K(�j � �2K) (30)
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Thus, in the ith interval, we get from Equation 17 and the De�nitions 20{30

I iL(�j) =
Z li

li�1

ai(�j � �) + ci

�j � �
d�

= ai(li � li�1) + ci

Z li

li�1

1

�j � �
d�

=
ai

K
+ ciln

�����j � li�1

�j � li

���� (31)

And note that for the case of i = j we have

ln

�����j � li�1

�j � li

���� = ln

�����j � lj�1

�j � lj

���� = ln

����
1

2K
�1
2K

���� = ln(1) = 0 (32)

so that

I
j
L(�j) =

aj

K
(33)

Hence, the value of IL(�) in Equation 17 can be approximated for � = �j such that

IL(�) '
2KX

i=K+1

I iL(�j) (34)

3.1.2 a+ due to left-boundary residual:

Substituting Equation 14 into Equation 6 (for a+) we get

a+ =
1

N+

0

Z
1

�1
�L(�)H(�)� +

0
(�)d� (35)

Using Equation 2, Equation 35 becomes

a+ =
1

N+

0

Z
1

�1
�L(�)H(�)�

c

2

�0

�0 � �
d�

=
c�0

2N+

0

Z
1

0

�L(�)�

�0 � �
d� (36)

where we note that �0 > 1 (Reference [3], page 72).
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Following the approach in Section 3.1.1 above, assume a linear form for

�(�) =
c�0�L(�)�

2N+

0

(37)

in each interval i such that

�i(�) = ai(�0 � �) + ci i = K + 1;K + 2; � � � ; 2K (38)

where

aK+1 =
�(�K+2)� �(�K+1)

�K+1 � �K+2

= K[�(�K+1)� �(�K+2)] (39)

cK+1 = �(�K+1)� aK+1(�0 � �K+1) (40)

ai =
�(�i+1)� �(�i�1)

�i�1 � �i+1
=
K

2
[�(�i�1)� �(�i+1)] i = K + 2;K + 3; � � � ; 2K � 1 (41)

ci = �(�i)� ai(�0 � �i) i = K + 2;K + 3; � � � ; 2K � 1 (42)

a2K =
�(�2K)� �(�2K�1)

�2K�1 � �2K
= K[�(�2K�1)� �(�2K)] (43)

c2K = �(�2K)� a2K(�0 � �2K) (44)

Then

ai
+

=

Z li

li�1

ai(�0 � �) + ci

�0 � �
d�

=
ai

K
+ ciln

�
�0 � li�1

�0 � li

�
(45)

and a+ is approximated by

a+ '
2KX

i=K+1

ai
+

(46)



Distribution

XTM{RN (U) 98{009
March 13, 1998Page 9

3.2 Components due to right-boundary residual

We now choose x = �T to be the left boundary and x = 0 the right. Then the boundary

source-density as given by Equation 11 is now written as

S(�) =j � j [�(�T; �)H(�) + �(0; �)H(��)] (47)

Subscripting with R to indicate right-boundary quantities, the right-boundary ux due to the

right-boundary residual source density is, from Equations 47 and 12

�R(�)H(��) =
S1

R(�)

j � j
=
SE
R(�)

j � j
��(0; �)H(��) (48)

where SE
R(�) is the given source (if any, on the right boundary), and �(0; �) is the computed

ux (on the right boundary).

3.2.1 A(�) due to right-boundary residual:

Substituting Equation 48 into Equation 7 we get

AR(�) =
1

N�

Z
1

�1
�R(�)H(��)� �(�)d� (49)

Using Equations 4 and 49 we get

AR(�) =
1

N�

Z
1

�1
�R(�)H(��)�

h c
2
P

�

� � �
+ �(�)�(� � �)

i
d�

=
1

N�

Z
0

�1
�R(�)�

c

2
P

�

� � �
d� +

1

N�

�R(�)H(��)��(�)

= IR(�) +BR(�) (50)

where

IR(�) =
1

N�

Z
0

�1
�R(�)�

c

2
P

�

� � �
d� (51)

and

BR(�) =
1

N�

�R(�)H(��)��(�) (52)
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Using Equations 10 and 52 we get

BR(�) =
�R(�)H(��)��(�)

�
h
�2(�) + �2c2

4
�2
i

=
�R(�)H(��)h
�(�) + �2c2

4�(�)
�2
i (53)

From Equation 5, we see that �(�) is unbounded for � = �1; but, BR(�1) vanishes, as can

be seen from Equation 53.

The IR(�) of Equation 51 can be calculated, with appropriate care in the vicinity of � = �,

using the approach in Section 3.1.1, above. And again, as Booth explains in Reference [1],

Section IV, we need AR(�) only for � < 0.

Divide the interval [-1,1] into 2K equal intervals (same as in Section 3.1.1, above), and, for

�1 � � � 0, let �i and �i be the midpoints of the intervals

�i = �i =
(i� 1

2
)�K

K
i = 1; 2; � � � ;K (54)

Let

li =
i�K

K
i = 1; 2; � � � ;K (55)

be the endpoints of the ith interval, viz.

li�1 � � < li i = 1; 2; � � � ;K (56)

To evaluate IR(�) for the eigenvalues �j , assume a linear form for

�(�) =
1

2N�

�R(�)c�� (57)

in each interval. That is,

�i(�) = ai(�j � �) + ci i = 1; 2; � � � ;K (58)
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Note that ai in Equation 58 is the slope of our linearized �i(�) in each interval. For i = 1

and i = K we use a one-sided estimate of the ai, because no information about �R(�)H(��)

exists for i = 0 or i = K + 1. Elsewhere, a two-sided estimate of the slope is used.

Hence

a1 =
�(�2)� �(�1)

�1 � �2
= K[�(�1)� �(�2)] (59)

c1 = �(�1)� a1(�j � �1) (60)

ai =
�(�i+1)� �(�i�1)

�i�1 � �i+1
=
K

2
[�(�i�1)� �(�i+1)] i = 2; 3; � � � ;K � 1 (61)

ci = �(�i)� ai(�j � �i) i = 2; 3; � � � ;K � 1 (62)

aK =
�(�K)� �(�K�1)

�K�1 � �K
= K[�(�K�1)� �(�K)] (63)

cK = �(�K)� aK(�j � �K) (64)

Thus, in the ith interval, we get from Equation 51 and the De�nitions 54{64

I iR(�j) =

Z li

li�1

ai(�j � �) + ci

�j � �
d�

= ai(li � li�1) + ci

Z li

li�1

1

�j � �
d�

=
ai

K
+ ciln

�����j � li�1

�j � li

���� (65)

And note that for the case of i = j we have

ln

�����j � li�1

�j � li

���� = ln

�����j � lj�1

�j � lj

���� = ln

����
1

2K
�1
2K

���� = ln(1) = 0 (66)



Distribution

XTM{RN (U) 98{009
March 13, 1998Page 12

so that

I
j
R(�j) =

aj

K
(67)

Hence, the value of IR(�) in Equation 51 can be approximated for � = �j such that

IR(�) '
KX
i=1

I iR(�j) (68)

3.2.2 a� due to right-boundary residual:

Substituting Equation 48 into Equation 6 (for a�) we get

a� =
1

N�
0

Z
1

�1
�R(�)H(��)� �

0
(�)d� (69)

Using Equation 2, Equation 69 becomes

a� =
1

N�
0

Z
1

�1
�R(�)H(��)�

c

2

�0

�0 + �
d�

=
c�0

2N�
0

Z
0

�1

�R(�)�

�0 + �
d� (70)

where, again, we note that �0 > 1 (Reference [3], page 72).

Following the approach in Section 3.1.2 above, assume a linear form for

�(�) =
c�0�R(�)�

2N�
0

(71)

in each interval i such that

�i(�) = ai(�0 + �) + ci i = 1; 2; � � � ;K (72)

where

a1 =
�(�2)� �(�1)

�2 � �1
= K[�(�2)� �(�1)] (73)
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c1 = �(�1)� a1(�0 + �1) (74)

ai =
�(�i+1)� �(�i�1)

�i+1 � �i�1
=
K

2
[�(�i+1)� �(�i�1)] i = 2; 3; � � � ;K � 1 (75)

ci = �(�i)� ai(�0 + �i) i = 2; 3; � � � ;K � 1 (76)

aK =
�(�K)� �(�K�1)

�K � �K�1
= K[�(�K)� �(�K�1)] (77)

cK = �(�K)� aK(�0 + �K) (78)

Then

ai� =

Z li

li�1

ai(�0 + �) + ci

�0 + �
d�

=
ai

K
+ ciln

�
�0 + li

�0 + li�1

�
(79)

and a� is approximated by

a� '
KX
i=1

ai� (80)

4. Implementation of Reduced Source Algorithms into Test-bed Code

The implementation of the algorithms implied by the foregoing sections is straightforward to

describe. What is required, essentially, is:

1. an iteration loop surrounding Booth's Monte Carlo estimation (originally designed for

one pass of a speci�ed number of histories);

2. the coding that computes the reduced source at the end of each iteration (see Section 2,

above);

3. coding to sample the reduced source (which, in general, will have both positive and

negative components on both sides of the slab);

4. coding that computes, by numerical integration, the direct reduced-source contributions

to the transport coe�cients (see Section 3, above).

The devil is in the details, however.
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Just as traditional Monte Carlo coding is prone to having bugs that are sometimes di�cult to

uncover, the intricacies of reduced-source iteration seem to exacerbate such di�culties. And

the introduction of negative sources, which stem from overprediction of the boundary sources

in a precursor iteration, add more mud to the already muddy waters. One can imagine all the

opportunities provided by the foregoing eighty or so equations to have a minus sign go astray.

Three very basic strategies helped to debug the resulting code. First, I recast the original

into a modular version, and added the requisite generalizations in modular fashion. Second, I

restricted my updates to a relatively small granularity, keeping a well documented and tested

trail of these incremental changes, along with the speci�c versions of the complete source

code for each update. In this fashion, I was always able to back up to any previous status of

my code development. And the third strategy, which helped immeasurably in tracking down

errors, was the recognition that the solution should be symmetric about the sign of the given

source, and the provision for an initial given source of either sign.

5. Demonstration of Reduced-Source Convergence

To illustrate the kind of results obtained by the \xmuh-code" that was extended by the

theory of the foregoing sections, two �gures, below, show composite plots for 2 runs. Figure 1

displays the behavior of the positive components of the boundary residuals; Figure 2 displays

the corresponding behavior of the negative components. Each �gure compares the

convergence of one run that used 1000 bins for the numerical integrations (and the same

number for sampling the reduced sources), and one run that used twice as many bins. In

addition, a plot of a traditional inverse-root convergence rate is displayed for illustration.

And, to highlight the comparison between the \1000-bin" result and the \2000-bin" result,

the \1000-bin" result is additionally shown scaled-down to match the \2000-bin" result at

the third iteration. This serves to demonstrate that the convergence rate toward a zero

boundary residual is constrained by the precision of the numerical computation.

Whereas the inverse-root improves its convergence by less than a factor of 3

(iterations 3{25), the 1000-bin result improves by 2 orders of magnitude, and the 2000-bin

result by more than 3 orders of magnitude. It is important to point out that cpu-time per

iteration is constant in a given run, but the magnitude of the constant, of course, depends on

the precision of the numerical integration and source-sampling tables (as speci�ed by the

re�nement of the binning).

A follow-on research note will examine the results, from the reduced-source approach

documented herein, in greater detail. In particular, I will examine the rate of convergence to

the true solution, using a metric to be developed for that purpose.
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Figure 1. Decrease of (positive) reduced-source weight, as a function of iteration number,

for a slab of thickness 2 [x-units]. The initial (given) source density was of the form

S(�) = �e��
2

. Each iteration comprised 50 histories, and, for each of the runs (i.e., using

1000 bins and 2000 bins) individually, the cpu time per iteration was essentially constant.

The plots compare how the re�nement of the numerical computations a�ect the rate of

decrease, and include a plot of constantp
iteration

for illustration.
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Figure 2. Decrease of (negative) reduced-source weight, as a function of iteration number,

for a slab of thickness 2 [x-units]. The initial (given) source density was of the form

S(�) = �e��
2

. Each iteration comprised 50 histories, and, for each of the runs (i.e., using

1000 bins and 2000 bins) individually, the cpu time per iteration was essentially constant.

The plots compare how the re�nement of the numerical computations a�ect the rate of

decrease, and include a plot of constantp
iteration

for illustration.
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